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The paper deals with analytical aspects of the laser flash method with repeated
pulses, which is a photothermal experimental method for measurement of the
thermal diffusivity of solids. It concentrates on the data reduction—an estima-
tion of the thermal diffusivity from the experimental data. Special attention is
given to the technique of correction of the width and shape of the heat pulses.
Results of sensitivity and optimal experimental design analysis are discussed in
detail. It focuses on questions of the influence of setting the experimental param-
eters, heat pulse period and the number of applied heat pulses, to the sensitivity
of the method as well as the optimum time of duration of an experiment.
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thermal diffusivity.

1. INTRODUCTION

The laser flash method with repeated pulses is a photothermal experimental
method for measurement of the thermal diffusivity of solids. The method is
an extension of the standard laser flash method based on an analysis of the
thermal response of the test material sample to a heat pulse [1]. The laser
flash method with repeated pulses uses a small disk-shaped sample similar
to the standard laser flash method. Here the one (front) surface of the



sample is subjected to several repeated heat pulses originated by consecu-
tive laser pulses. The resulting temperature rise on the opposite (rear) face
of the sample is measured, and the thermal diffusivity is computed from the
temperature rise versus time data [2, 3]. Data reduction—calculation of
the thermal diffusivity from the experimental data consists of an estimation
of one parameter of interest—the thermal diffusivity and one, or two, other
additional (nuisance) parameter(s)—the temperature term (the adiabatic
temperature limit), and the Biot number, as it conforms to the ideal
adiabatic or, nonideal, analytic theory, respectively.

The aim of an introduction of the flash method with repeated pulses is
to overcome particular experimental difficulties connected with an appli-
cation of highly intensive pulses. Splitting the total energy entering the
sample among several consecutive pulses reduces temperature gradients
in the sample, which cause problems in case of an investigation of insula-
tors, temperature sensitive materials, large-grain heterogeneous materials,
measurements near the phase transition, etc.

The purpose of the present work is to perform experimental design
analysis [4] and to discuss the achieved results. Here the concept of sen-
sitivity coefficients S [5] as well as the formalism based on the criterion
to maximize the ratio of determinants D/D2 of STS, which contains the
product of the sensitivities and their transpose [6], is utilized. Results give
arguments on how setting the experimental parameters influences the sen-
sitivity of the method as well as it influences the optimum time of duration
of an experiment, as presented for the flash methods with extended pulses,
the step heating method [7], and other prescribed steady-state [6, 8] or
periodic [9] heat flux methods.

2. ANALYTICAL BASIS

The analytical model considers a homogeneous opaque slab of thick-
ness ewith uniform and constant thermophysical properties and the density r.
The sample front face is exposed to instantaneous heat pulses repeated
with a period tp, analytically described by the shape f(t)=Qd(t−ktp);
k=0, 1,..., p. Here Q is the heat supplied by a pulse to a unit area of the
front face, d(t) is the Dirac’s function, and (p+1) is the number of pulses.
If there is heat transfer between the sample and its environment, governed
by Biot numbers H0 and He at the front and rear faces, respectively, the
transient rear-face temperature T(t) can be expressed in the form of a
Fourier series [3],

T(t)=Tlim C
.

n=1
An(H0, He) C

k

i=0
exp[nn(itp−t)], (1)
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where Tlim is the adiabatic limit temperature (Tlim=Q/(rce) with c being the
heat capacity), t is the time, a is the thermal diffusivity

An(H0, He)=
2u2n(u

2
n+H

2
e) 1cos un+

H0
un

sin un 2

(u2n+H
2
0)(u

2
n+H

2
e)+(H0+He)(u

2
n+H0He)

,

H0 > 0; He > 0 (2)

nn=
u2na
e2
, (3)

k=70, 1,..., p−1;
p

ktp [ t < (k+1) tp
t \ ptp

, (4)

and un are the positive roots of the equation,

(u2−H0He) tan(u)=(H0+He) u. (5)

3. DATA REDUCTION

The data reduction, an estimation of the thermal diffusivity, consists
of a least-squares fit of the theoretical curves to the measured temperature
rise versus time evolution. It is easy to show that the problem of finding the
thermal diffusivity can be transformed to solving the algebraic equations
[10],

C
N

j=1
Tjhj(a, H) C

N

j=1
hj(a, H)

“hj(a, H)
“a

− C
N

j=1
Tj
“hj(a, H)
“a

− C
N

j=1
h2j (a, H)=0,

(6)

C
N

j=1
Tjhj(a, H) C

N

j=1
hj(a, H)

“hj(a, H)
“H

− C
N

j=1
Tj
“hj(a, H)
“H

− C
N

j=1
h2j (a, H)=0,

(7)

where Tj is the experimental temperatures measured in the time tj, hj(a, H)=
T(tj)/Tlim is the analytical dimensionless temperature rise (Eq. (1)) (assum-
ing H=H0=He) and N is the number of points taken into account. The
approach also allows an estimation of the adiabatic limit temperature Tlim
[11].
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4. EXTENDED PULSES

The simple theory considers that the applied heat pulses are instanta-
neous. This assumption is valid when the heat pulse duration is negligibly
small, i.e., in the case of measuring a poor thermal conductive material
and/or for sufficiently thick samples. Otherwise, the duration and the
shape of the heat pulses should be taken into account. The expression for
the temperature rise evolution in the case of square-wave shaped pulses has
been given [3]; the other formulas suitable for the usual heat-pulse-shape
approximations are summarized elsewhere [12].

The other solution originally proposed for the standard ‘‘one pulse’’
laser flash method consists of adjustment of the effective irradiation time tg
using the center of gravity of the heat pulse defined as [13]

tg=F
.

0
tŒj(tŒ) dtŒ. (8)

The correction of the influence of the heat pulse duration consists of shift-
ing the time axis taking the effective irradiation time tg as the time origin.
Then the heat pulse is considered to be instantaneous and the appropriated
analytical solution for an ideal heat pulse is utilized in the data reduction
[14].

This correction can be effectively used in the case of repeated pulses,
as is shown in the Appendix. It consists practically of shifting the time axis
to the effective irradiation time tg of the first heat pulse. Then the analytical
solution (Eq. (1)) is considered in the data reduction.

5. SENSITIVITY ANALYSIS

The simulated curves were calculated using the formula (Eq. (1)). The
temperature Tlim was chosen to be 1 K. Axial and radial heat losses from
the sample were assumed to be the same H=H0=He=0.05. Sensitivities
are defined as

Sb=b
“T
“b
, (9)

where T is the rear face temperature and b is the appropriate parameter—
thermal diffusivity a, the adiabatic limit temperature Tlim, or the Biot
number H.

Figure 1 presents the simulated temperature rise and sensitivities
versus dimensionless time (y=at/e2) curves. Five pulses that follow with
the time period yp=atpe−2=0.1 are considered here. Because of the linear
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Fig. 1. Simulated temperature rise T, sensitivity to thermal
diffusivity Sa, sensitivity to limit temperature ST lim , and sensi-
tivity to the Biot number SH vs. dimensionless time y curves.

dependence of the temperature rise on the adiabatic limit temperature Tlim,
the temperature rise curve corresponds to the sensitivity to the adiabatic
limit temperature Tlim versus time curve STlim . The figure shows, that curves
STlim , Sa (Sa is the sensitivity to the thermal diffusivity) and SH (SH, sen-
sitivity to the Biot number), have different shapes and the curves are
uncorrelated. This indicates that a least-squares-fitting-based data reduc-
tion process can be effectively used for unique estimation of desired param-
eters a, Tlim, and H [6]. Figure 1 shows that the sensitivity to thermal dif-
fusivity results from its magnitude being comparable to the temperature.
This confirms that the flash method with repeated pulses is reasonably
sensitive to changes in the thermal diffusivity. Maximum values of sensiti-
vity to the thermal diffusivity curves lie periodically after each pulse appli-
cation around the half time y0.5 (the half-time y0.5=at0.5e−2 % 0.139 is
the time corresponding to a rise in the temperature to half of its maximum
value in the standard flash method). These points correspond to the
optimal points in a simple data reduction experiment. When the tempera-
ture rise versus time curve reaches its maximal value, the curve become
practically insensitive to changes in the thermal diffusivity. These facts
indicate that the thermal diffusivity estimation should be based on analyz-
ing the rising part of the temperature rise versus time curve. The sensitivity
to the Biot number is smaller than the sensitivity to thermal diffusivity,
especially for the rising part of the temperature rise versus time curve. The
Biot number influences the thermal response less than the thermal diffusiv-
ity, which is a positive influence since we consider this parameter as a nui-
sance one.

Figure 2 shows how the sensitivity to the thermal diffusivity depends
on the period of the applied heat pulses. This figure shows the sensitivity to
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Fig. 2. Sensitivity to thermal diffusivity Sa vs. dimen-
sionless time y curves calculated for different heat pulse
period yp. Maximum values correspond to the optimum
times for a single measurement.

the thermal diffusivity versus time curves calculated for three applied pulses
using three different heat pulse periods yp=0.05, 0.1, and 0.2. We see, that
the maximum in sensitivity increases and is shifted to shorter times when
the heat pulse period decreases. The entire sensitivity for a longer heat
pulse period is spread over longer times. Figure 3 emphasizes the synergetic
effect of the sensitivity of the method on a decrease of the heat pulse period yp.
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Fig. 3. Sensitivity to thermal diffusivity Sa vs. dimension-
less temperature rise T/Tmax curves, where Tmax is the maxi-
mum temperature rise, calculated for different heat pulse
period yp.
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Fig. 4. Simulated temperature-rise curves calculated con-
sidering various numbers of pulses (p+1=1, 2,..., 10) assum-
ing the same energy for a pulse (Tlim=1 K; Case No. 1).

Here the sensitivities are shown as a function of the dimensionless temper-
ature rise T/Tmax, where Tmax is the maximum temperature increase. We see
that if the period yp decreases to zero, the maximum sensitivity occurs at
approximately the temperature that corresponds to half of the maximum tem-
perature increase. Enlargement of the period yp causes several maxima of
the sensitivity curves that occur at half-times y0.5 for every single heat pulse.

To view the influence of the number of pulses, the following calcula-
tions were performed. Two different cases were considered: the first, when
all the pulses have the same energy, and the second, when we assume the
same total energy enters the sample and the energy of a heat pulse depends
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Fig. 5. Simulated temperature-rise curves calculated con-
sidering various numbers of pulses (p+1=1, 2,..., 10) assum-
ing the same total energy enters the sample (Tlim=1/
(p+1)K; Case No. 2).
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Fig. 6. Sensitivity to thermal diffusivity Sa vs. dimensionless
time y curves (Case No. 1).

on the number of applied pulses. Figures 4 and 5 present simulated tem-
perature rise versus dimensionless time curves calculated for Cases No. 1
and 2—when Tlim=1 and Tlim=1/(p+1), respectively. Figures 6 and 7,
where sensitivities to the thermal diffusivity are shown as a function of
dimensionless time and dimensionless temperature rise, respectively, indi-
cate that if the number of pulses increases, the sensitivity of the flash
method with repeated pulses increases. The dependence of the thermal dif-
fusivity estimation sensitivity on the applied number of pulses is nonlinear;
the increase is larger for a smaller number of pulses. Maximum sensitivity
has generally the tendency to occur at higher dimensionless times and
higher dimensionless temperature rises, which is a logical consequence of
an increase in the overall exposure time.
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Fig. 7. Sensitivity to thermal diffusivity Sa vs. dimensionless
temperature rise T/Tmax curves (Case No. 1).
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Fig. 8. Sensitivity to thermal diffusivity Sa vs. dimensionless
time y curves (Case No. 2).

On the other hand, Figs. 8 and 9, where sensitivity to the thermal dif-
fusivity, similarly as for Case No. 1, are presented as a function of the
dimensionless time and the dimensionless temperature rise, respectively,
show the opposite influence. If the number of pulses among which the
overall energy is split increases, the sensitivity to the thermal diffusivity
decreases. This negative phenomenon is enhanced by the fact that the
maximum sensitivity occurs at higher times and higher dimensionless
temperature rises when the number of pulses increases as in Case No. 1.

6. OPTIMUM EXPERIMENTAL DESIGN

The criterion chosen for the optimal design analysis was the ratio of
determinants D/D2 of STS, which contains the product of the sensitivities
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Fig. 9. Sensitivity to thermal diffusivity Sa vs. dimensionless
temperature rise T/Tmax curves (Case No. 2).
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and their transpose [6]. As follows from the theory, maximizing the ratio
D/D2 has the effect to minimize the confidence interval for the resulting
estimate of the thermal diffusivity. In the case of three parameters, D=
|STS| is a 3×3 matrix and the determinant is given by

D=|STS|= :
d11 d12 d13

d21 d22 d23

d31 d32 d33

: . (10)

Here

dij=
1
tn
F
tn

0
Si(t) Sj(t) dt, i, j=1, 2, and 3 (11)

where indices 1, 2, and 3 refer to parameters a, Tlim, and H, respectively,
and

D2=:
d22 d23
d32 d33
: . (12)

This criterion corresponds to the case when the thermal diffusivity a is
understood as the parameter of interest, and the adiabatic temperature
limit Tlim and the Biot number H are additional nuisance parameters.

Figure 10 presents the D/D2 criterion calculated for various periods yp
of the applied heat pulses. Results confirm that which comes from sensitivity
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Fig. 10. Results of optimal experimental design analysis (D/D2
criterion) calculated for different heat pulse periods yp. Shorter
pulse period results in increased values of D/D2 and in decreases
of the optimum time of measurement yn.
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Fig. 11. Dependence of the value of D/D2 determinants
ratio calculated for different number of pulses p+1
assuming the same energy for each pulse (Case No. 1).

analyses. An increase of the period yp decreases maximum values of D/D2

ratio, which confirms a decrease of the sensitivity to the thermal diffusivity.
An increase of the time period yp also increases the optimal time
of measurement yn (yn=1.4, 1.63, and 2.08 for yp=0.05, 0.1, and 0.2,
respectively).

Figures 11 and 12 present results of the study of the influence on the
number of pulses. We see the positive influence—an increase of the
maximum of the D/D2 value only in Case No. 1 (the case of the same heat
pulse energy); if the overall energy is only split among the pulses (Case
No. 2), the value of the maximum of the D/D2 decreases with an increase of
the number of pulses. The calculations also give optimum duration of
experiment yn as summarized in Table I.
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Fig. 12. Dependence of the value of D/D2 determinants
ratio calculated for different number of pulses p+1
assuming the same total energy that enter the sample
(Case No. 2).
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Table I. Results of Optimal Design Calculation for Various Number of Heat Pulses

Case No. 1 Case No. 2

p+1 D/D2 yn D/D2 yn

1 0.024 1.24 0.024 1.23
2 0.087 1.31 0.022 1.31
3 0.17 1.40 0.019 1.4
4 0.27 1.50 0.017 1.49
5 0.38 1.59 0.015 1.59
6 0.48 1.69 0.013 1.68
7 0.58 1.78 0.012 1.78
8 0.67 1.88 0.010 1.88
9 0.75 1.98 0.009 1.98

10 0.83 2.08 0.008 2.08

7. CONCLUSIONS

The achieved results of the analyses could be generalized as follows:

1. A decrease of the period yp of the applied heat pulses has the effect
of an increase of the sensitivity to the thermal diffusivity.

2. Maximum values of the sensitivity to thermal diffusivity curves
occur periodically after each pulse application around half-times
y0.5 for each individual heat pulse; if the time period yp approaches
zero, the maximum of the sensitivity curve occurs near the half-
time y0.5 of the overall temperature rise curve. This is why the
thermal diffusivity estimation should be based on analyzing the
rising part of the temperature rise versus time curve.

3. An increase in the number of applied heat pulses has a positive
influence only when the pulses have the same energy. In the case,
when the overall energy is split only among the applied pulses, an
increase of the number of pulses has the effect of a decrease of the
sensitivity of the method.

4. An increase of the heat pulse period and an increase of the
number of pulses have the effect of an increase in the optimal
duration of the experiment.

APPENDIX

If the heat pulses are instantaneous, analytically described by the
shape f(t)=Qd(t−ktp), the expressions for the rear face temperature rise
versus time evolution (Eq. (1)) can be written in the simplified form,

TD=C
n

C
i
An exp[nn(itp−t)]. (13)
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If the function j(t) describes a heat-pulse shape (assuming that the applied
pulses have the same shape), the function f(t)=Qj(t−ktp); k=0, 1,..., p
describes shapes of extended repeated heat pulses. Provided that the func-
tion f(t) is normalized, i.e.,

F
.

0
f(tŒ) dtŒ=1, (14)

the exact solution that describes the rear-face temperature rise versus time
evolution can be derived in the form [15],

TE=C
n

C
i

5F t
0
j(tŒ−itp) exp(nntŒ) dtŒ6 An exp[nn(itp−t)]. (15)

Because of the periodicity of the pulses

j(tŒ−itp)=j(tŒ) (16)

and

TE=C
n

C
i
I1niAn exp[nn(itp−t)], (17)

where

I1ni=F
t

0
j(tŒ) exp(nntŒ) dtŒ. (18)

If we shift the time axis taking the time tg as the time origin, the tempera-
ture TD changes to

TD=C
n

C
i
An exp[nn(itp−t+tg)]=C

n
C
i
I2niAn exp[nn(itp−t)], (19)

where

I2ni=exp(nntg). (20)

Expressing I1ni and I2ni in a Taylor series according to time y, and ignoring
quadratic and higher terms [14], it can be shown, that I1ni is equal to I2ni
when

tg=F
t

0
tŒj(tŒ) dtŒ. (21)

This confirms the above-described concept of the correction of the finite
pulses duration.

The Laser Flash Method with Repeated Pulses 1169



REFERENCES

1. W. J. Parker, R. J. Jenkins, C. P. Butler, and G. L. Abbott, J. Appl. Phys. 32:1679 (1961).
2. L. Vozár, G. Groboth, W. Hohenauer, and E. Hübner, in Proc. 10 th Int. Conf. Photo-
acoustic Phototherm. Phenomena (AIP Woodbury, New York, 1999), pp. 351–353.

3. L. Vozár and W. Hohenauer, High Temp. High Press. 33:9 (2001).
4. A. F. Emerey and A. V. Nenarokomov,Meas. Sci. Technol. 9:864 (1998).
5. K. J. Downing, B. F. Blackwell, and R. J. Cochran, Num. Heat Transf. B 36:33 (1999).
6. J. V. Beck and K. J. Arnold, Parameter Estimation in Engineering and Science (Wiley,

New York, 1977), pp. 419–480.
7. L. Vozár and G. Groboth, High Temp. High Press. 29:191 (1997).
8. R. Taktak, J. V. Beck, and E. P. Scott, Int. J. Heat Mass Transf. 36:2977 (1993).
9. A. Haji-Sheikh, Y. S. Hong, S. M. You, and J. V. Beck, J. Heat Transf. 120:568 (1998).

10. J. Gembarovič, L. Vozár, and V. Majerník, Int. J. Heat Mass Transfer 33:1563 (1990).
11. L. Vozár and W. Hohenauer, in Proc. VIth Int. Asian Thermophys. Prop. Conf.,

Guwahati, India (in press).
12. L. Vozár, Flash Method for the Thermal Diffusivity Measurement. Theory and Praxis
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